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Abstract—In the tasks of predicting the volumes of methane 

emissions from thermokarst lakes in the Arctic territories, as 

one of the causes of modern global warming, it is necessary to 

use, along with climatic characteristics, data on the dynamics of 

lake areas, which are usually obtained using satellite imagery. 

Due to the large number of cloudy days in the northern territo-

ries, it is possible to obtain only a small number of cloudless im-

ages, which leads to significant omissions in the time series of 

lake areas. To restore the missing values of the area of the lakes, 

it is proposed to use a new approach to the restoration of missing 

values based on the methods and algorithms of entropy-ran-

domized machine learning. The work is supposed to restore the 

missing values in the experimental data on the areas of thermo-

karst lakes using time series of average annual temperature and 

annual precipitation. As experimental data on the thermokarst 

lakes areas and climatic parameters (temperature and amount 

of precipitation), we used the results of studies conducted in the 

Arctic zone of Western Siberia from 1973 to 2007. Studies were 

conducted in nine test sites selected in different permafrost 

zones (continuous, discontinuous and insular). Data on the av-

erage annual temperature and annual precipitation for each test 

site were obtained by reanalysis. The developed algorithm for 

recovering missing values within the framework of this ap-

proach is implemented using the MATLAB R2019a tools. The 

missing values are calculated for the selected nine test sites. To 

illustrate, the time series of the values of the area of lakes, tem-

perature and precipitation in one of the test sites are shown. An 

analysis of the omissions recovery errors was carried out, which 

showed that the developed algorithm allows us to restore the 

missing values of the lake areas from the data on changes in tem-

perature and precipitation with practically acceptable accuracy.    

Keywords—randomization, machine learning, entropy 

criteria, thermokarst lakes, climatic parameters, modeling, 

restoration of missing data 

I. INTRODUCTION 

The randomized approach is of particular importance for 
solving the problems of predicting the dynamics of the accu-
mulation of greenhouse gases in the thermokarst lakes of the 
Arctic zone in connection with their influence on global cli-

matic changes. Solving these may be the basis for the devel-
opment and functioning of adaptation systems [1] to changing 
environmental conditions at various control lazy levels.  

With the coming global warming in the coming decades, 
the processes of thawing of frozen rocks will accelerate [2], 
leading to an additional release of methane as a vital product 
of microorganisms that process thawed organic matter. This is 
capable of making an additional tangible contribution to cli-
mate warming, which raises global public concern. Awareness 
of this was the reason for the adoption of the Paris Climate 
Agreement (2016), which envisages the development in dif-
ferent countries of measures capable of preventing an increase 
in the average annual temperature of the Earth by more than 
1.5 ° C until 2050. The development of such measures at the 
regional level for the Arctic regions is impossible without the 
formation of reasonable forecasts of methane and carbon di-
oxide emissions, which can be based on knowledge of the spa-
tio-temporal dynamics of lake fields [3,4] in the regions. The 
tasks of predicting the dynamics of accumulation of green-
house gases in thermokarst lakes for the next decades require 
the use of data on the time series of lake areas and climatic 
parameters (temperature, precipitation). 

Due to the high degree of bogging of the Arctic territories, 
data on lake areas can only be obtained using satellite imagery 
[4,5]. Due to the large number of cloudy days in the northern 
territories, it is possible to obtain cloudless images only in 
some years. As a result of this, the obtained time series of lake 
areas have a significant number of missing values. Issues of 
restoring gaps in time series of the lake area data are currently 
underdeveloped. The use of enthropy-randomized methods, 
which have shown, according to [6-8], is highly effective in 
solving problems of the global economy, demography, etc., is 
considered the most promising approach to restoring passes in 
our conditions. However, the methodological issues of restor-
ing missing values in the time series of lake areas within the 
framework of entropy-randomized approach have not been 
developed, which was the purpose of this work. 

II. DATA 

In Fig. 1 shows the layout of test sites (TS) for conducting 
studies aimed at obtaining data on the time series of areas of 
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thermokarst lakes, average annual temperature, and annual 
precipitation. 

Landsat medium-resolution satellite images (30 m) ob-
tained from 1973 to 2007 were used to collect the data on lake 
areas. Methodological issues for conducting these studies are 
described in [4]. Data on climatic characteristics were ob-
tained using data reanalysis procedures [3]. 

For example in Tab. 1 shows data on the average area of 

thermokarst lakes S̃m, average annual temperature  T̃, annual 

precipitation R̃ at TS - 1 from 1998 to 2007 years. 

 

 

Fig. 1. The layout of the test sites in the study area of Western Siberia 

As can be seen from the Tab. 1 (column 2), the data on the 
areas of lakes have a large number of missing values, which is 
characteristic of all the studied test sites. 

TABLE I.  DATA ON LAKE AREA, TEMPERATURE AND PRECIPITATION 

AT TS-1 

                  Data 

Years 
𝑺̃𝒎, 𝐡𝐚 𝑻̃, °С 𝑹̃, mm 

1 2 3 4 

1998 - -3,50 544,80 

1999 - -2,50 563,15 

2000 - -1,00 561,30 

2001 62,36 -2,00 430,20 

2002 - -2,06 520,15 

2003 62,31 -0,48 429,20 

2004 - -1,80 338,40 

2005 - 0,44 343,90 

2006 - -2,78 222,00 

2007 66,96 0,14 325,40 

 
 

Consider the issues of preparing data for calculations. Data 

on the area S̃, temperature T̃, and precipitation R̃ are collected 
for each of the nine test sites studied. For calculations, we 

transform the data to the standard (normalized) form using the 
following formulas: 

 S =  
S̃−S̃min

S̃max−S̃min
, 

 T =  
T̃−T̃min

T̃max−T̃min
 (1) 

 R =  
R̃−R̃min

R̃max−R̃min
.  

where S̃, T̃, R̃ – average area, average annual temperature and 
the amount of annual precipitation in natural units (ha, ° C, 
mm, respectively), S, T, R - normalized values of area, tem-
perature and precipitation (displayed on the interval [0,1]), the 
lower index is of all indicators means the minimum and max-
imum value of the sample. 

III. MODEL AND ALGORITHMS 

The technology of entropy-randomized forecasting is im-
plemented in below following sequence of steps [6]. First, a 
predictive randomized parametric model (RPM) is formed, its 
defining parameters are synthesized and the necessary infor-
mation support is agreed with it. RPM transforms an array of 
real input data 

X =  [x1, … , xs]ϵ Rn

into a model output characterized by a matrix 

Z = [z(1),...,z(s)],  z(j) ∈ Rm. 

In the general case, this transformation is assumed to be 
dynamic, i.e. the model output observed at time j depends on 
the input observed on a certain historical interval j –  ϱ, … , j, 
i.e. from the matrix Xϱ(j) = [xj−ϱ, … , xj]. The mathematical 

expression of this connection is the vector functional 

Ω̂(Xϱ(j)|α, P(α)) with random parameters α of the interval 

type 

 𝛼 ∈  𝒜 =  [𝛼−, 𝛼+].  (2) 

The probabilistic properties of the parameters are charac-
terized by a probability distribution density (PDD) P(α), 
which is assumed to be continuously differentiable. The RPM 

output at the jth moment in time is an ensemble Ζ̂(j | P(α)) of 
random vectors 

 ẑ(j|α) = Ω̂(Xϱ(j)|α, P(α)),           j = 1, s̅̅ ̅̅ . 

To simulate the influence of measuring errors, random 
noise ξ ∈  Rm of an interval type is introduced at the output 
of the object: 

 ξj  ∈  Ξj = [ξ−
j , ξ+

j
],     j = 1, s̅̅ ̅̅     (4) 

with continuously differentiable PDD functions Qj(ξj), j =

1, s̅̅ ̅̅ , according to which the ensemble ℱ (j|Qj(ξj)) is gener-

ated for each moment of measuring the output of the object. A 
set of random vectors (measurement noise) for the entire 
measurement interval is described by a matrix  
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 K = [ξ(j), j = 1, s̅̅ ̅̅ ], (5) 

which is characterized by the joint function PDD Q(K). If the 
noise in the measurements is statistically independent, then 

 Q(K) =  ∏ Qj(ξ(j))s
j=1   (6) 

The observed RPM output can be represented as: 

 v(j|α,  ξ(j)) = Ω̂(Xϱ(j)|α, P(α)),   j = 1, s̅̅ ̅̅ . (7) 

Random vectors (6) form ensembles, the mathematical ex-
pectation of which has the form: 

ℳ{v(j|α, ξ(j))} = ∫
𝒜

ẑ(j|α)P(α) dα + ∫
Ξj

Qj(ξ(j))ξ(j) dξ(j) =

 =  𝒲[P(α), Qj(ξ(j))],                 j = 1, s̅̅ ̅̅ . (8) 

The second stage of the technology of randomized fore-
casting [6-9] is associated with the training of RPM.  It is im-
plemented using the following algorithm [10]: 

  [𝑃∗(𝜶), 𝑄∗(𝐾)]  =  𝑎𝑟𝑔 𝑚𝑎𝑥 ℋ[𝑃∗(𝜶), 𝑄∗(𝐾)] (9) 

on the set of normalized functions 𝑃∗(𝜶), 𝑄∗(𝐾) for which the 
conditions of empirical balances are satisfied: 

 𝒲[P(α), Qj(ξ(j))]  =  y(j),   j = 1, s̅̅ ̅̅  (10) 

where 𝑦(𝑗)  ∈  𝑅𝑚 is the vector of real measurements of the 

object's output. 
Problem (9-10) belongs to the class of functional entropy-

linear equations of the Lyapunov type [10], which have an an-
alytical solution obtained using Lagrange factors Θ =
 [θj, j = 1, s̅̅ ̅̅ ]  (vectors θj  ∈  Rm): 

P∗(α)  =  
exp(– ∑ 〈θj, ẑ(j|α)〉s

j=1 )

𝒫(Θ)
,

 Qj
∗(ξ(j))  =  

exp(– 〈θj,   ξ(j)〉)

𝒬j(θj)
,   j = 1, s̅̅ ̅̅ ;  

𝑄𝑗
∗(ξ(𝑗))  =  

𝑒𝑥𝑝(– 〈𝜃𝑗 ,   ξ(𝑗)〉)

𝒬𝑗(𝜃𝑗)
,   𝑗 = 1, 𝑠̅̅ ̅̅ ;    

  Q(K)  =  ∏ Qj
∗(ξ(j))s

j=1 . (11) 

The denominators of these expressions are normalization 
constants 

 𝒫(Θ)  =  ∫
𝒜

exp(– ∑ 〈θj, ẑ(j|α)〉s
j=1 ) dα,  

 𝒬j(θj)  =  ∫
Ξj

exp( – 〈θj,   ξ(j)〉) dξ(j),    j = 1, s̅̅ ̅̅  (12) 

The optimal PDD and normalization constants are param-
eterized by the Lagrange multipliers, which are determined by 
the solution of the following balance equations: 

 
ℰ(Θ)

𝒫(Θ)
 +  

𝒯j(θj)

𝒬j(θj)
 =  y(j),       j = 1, s̅̅ ̅̅   (13) 

where 

 ℰ(Θ)  =  ∫
𝒜

 ẑ(j|α) exp(– ∑ 〈θj, ẑ(j|α)〉s
j=1 ) dα , (14) 

 𝒯j(θj)  =  ∫
Ξj

ξ(j) exp( – 〈θj,   ξ(j)〉) dξ(j),    j = 1, s̅̅ ̅̅ .  

In our case, the array of measured data on the lakes area 
has a large number of missing values. To restore the missing 
data, we use the principle of entropy randomization by area, 
using the available data on temperature and precipitation. It is 
known that temperature and precipitation affect the area of 
lakes, and to a first approximation this effect can be described 
by a linear dependence with noise in the form: 

 S[n]  =  αT[n]  +  βR[n] + ξ[n]. (15) 

Coefficients 𝛼, 𝛽 - random, interval: 

 α ∈  𝒜 =  [α−, α+],    β ∈  ℬ =  [β−, β+]. (16) 

Denote the PDD parameters P(α), F(β). 

Noise is also standardized and interval: 

 𝜉[n]  ∈  Ξ𝑗 = [𝜉−, 𝜉+]. (17) 

Denote the PDD of noise Qn(ξ[n]). 

Further, using the algorithm of randomized machine learn-
ing, we obtain: 

 ℋ = – ∫
𝒜

 P(α) ln P(α) dα – ∫
ℬ

 F(β) ln F(β) dβ –  

 – ∑ ∫
Ξm

Qm(ξ[m]) ln Qm(ξ[m])dξ[m]k
m=1  ⇒  max  

(18) 

under condition of normalization: 

∫
𝒜

P(α) dα  =  1, 

∫
ℬ

F(β) dβ  =  1,

   ∫
Ξm

Qm(ξ[m])dξ[m] = 1,    m = 1, k̅̅̅̅̅ 

and empirical balances: 

 ∫
𝒜

P(α)αT[m] dα + ∫
ℬ

F(β)βR[m] dβ + 

 +∫
Ξm

Qm(ξ[m])ξ[m]dξ[m]  =  S[m],    m = 1, k̅̅̅̅̅

The solution to problem (18) has the form: 

 P∗(α, θ)  =  
exp(–α lr(θ))

𝒫(θ)
, 

 F∗(β, θ)  =  
exp(–β hr(θ))

ℱ(θ)
, 
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 Qm
∗ (ξ[m], θ)  =  

exp(–θm,ξ[m])

𝒬j(θm)
, m = 1, k̅̅̅̅̅ 

where 𝜃 =  {𝜃1, . . . , 𝜃𝑘} - Lagrange multipliers;  

- normalization coefficients: 

 𝒫(Θ)  =  ∫
𝒜

exp(– αlr(θ)) dα  ); 

 ℱ(θ) =  ∫
ℬ

exp(– βhr(θ)) dβ 

 𝒬j(θm)  =  ∫
ℬ

exp(– θmξ[m]) dξ[m],      m = 1, k̅̅̅̅̅ 

 lr(θ) = ∑ θmT[m],k
m=1    hr(θ) = ∑ θmR[m]k

m=1 . 

To determine the values of the Lagrange multipliers, it is 
necessary to solve the following system of equations: 

 L(θ)T(m) + K(θ)R(m) + Gm(θ) = S(m), m =
1, k̅̅̅̅̅ (

 L(θ) =
exp(–α–lr(θ))(α–lr(θ)+1)

exp(–α–lr(θ))–exp(–α+lr(θ))
+ 

 +
exp(α+lr(θ))(–α+lr(θ) + 1 )

exp(α+lr(θ))(–α+lr(θ) + 1 )
 

 K(θ) =
exp(–β–hr(θ))(β–hr(θ)+1)+

exp(–β–hr(θ))–exp(–β+hr(θ))
+ 

 +
exp(β+hr(θ))(–β+hr(θ) + 1 )

exp(–β–hr(θ))–exp(–β+hr(θ))
  

 Gm(θ) =
exp(–ξ–[m]θm)(ξ–[m]θm + 1 )

exp(–ξ–[m]θm)–exp(–ξ+[m]θm)
+ 

 +
exp(–ξ+[m]θm)(ξ+[m]θm + 1 )

exp(–ξ–[m]θm)–exp(–ξ+[m]θm)
. 

Using the model to calculate all the missing data and sam-
pling the PRV (24), we can construct an ensemble of trajecto-
ries S [n]. We calculate the average trajectory and fill in the 
missing data. 

After that, we transform the data from normalized to natu-
ral values (ha). To do this, we perform the action inverse to 
(1): 

 S̃res = S ∗ (S̃max − S̃min) + S̃min. (25) 

IV. RESULTS 

In accordance with the above algorithm, data was restored 
on all test sites. To illustrate, Fig. 2 shows the results of recov-
ery data presented in the form of graphs of the time course of 
the restored values of the area of lakes in the test sites 3, 5 and 
8. The hollow dots show the real (measured) values. 

The restoration error was calculated as an estimate of the 
average deviation of the restored values from the measured 
data. 

 

 

 
 

 
 

 
Fig. 2. Time series of values of the reconstructed data on the average area 

of lakes in three test sites 3, 5, and 8 in different permafrost zones: sporadic 

(A), discontinous (B), and continuous (C), respectively 

 

For each test site, we calculate the average deviation of the 
restored area data from the measured values using the follow-
ing formula: 

 ∆𝑠 =  
1

𝑛
∑

|𝑆̃𝑟𝑒𝑠𝑖−𝑆̃𝑚𝑖|

𝑆̃𝑚𝑖

,𝑛
𝑖=1  

where S̃resi
 is the value of the average area obtained as a result 

of measurements, S̃mi
 are the restored values of the average 

area, n is the number of measured points on a each TS. 

The data obtained are given in Tab. II. 
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TABLE II.  RESTORATION ERRORS  

TS 1 2 3 4 5 6 7 8 9 mean 

∆𝑠 0,04 0,15 0,08 0,04 0,04 0,06 0,04 0,07 0,04 0,05 

 
In addition, the mean deviation of the model area values 

from the measured values in all test sites was calculated using 
the formula: 

 ∆ =  
1

k
∑

|S̃resi−S̃mi|

S̃mi

k
i=1 , (27) 

where k is the total number of all measured values of the av-
erage area for all test sites.  

In our case, the following value was obtained: Δ = 0.06, 
while the standard deviation calculated by the standard for-
mula is 0.09. Consequently, the error in the recovery of gaps 
according to the developed algorithm does not exceed 9% in 
the mean square, which can be considered as a practically ac-
ceptable result. 

V. CONCLUSION 

The article discusses the methodological issues of a new 
approach to the restoration of missing values in experimental 
data on the areas of thermokarst lakes using time series of av-
erage annual temperature and annual precipitation. As experi-
mental data on the areas of thermokarst lakes and climatic pa-
rameters (temperature and amount of precipitation), we used 
the results of studies conducted in the Arctic zone of Western 
Siberia from 1973 to 2007. Nine test sites were selected for 
research, three in each of the permafrost zones. Data on the 
area of lakes are the results of remote measurements from sat-
ellite images. Due to the large number of cloudy days in the 
north of Western Siberia during the indicated period, a small 
number of values of the average area of lakes in those years 
when there were cloudless images. Therefore, to restore the 
missed values of the time series of lake areas, the most pro-
spective approach was based on entropy-randomized model-
ing. 

An algorithm for recovering missing values within the 
framework of this approach is developed, implemented using 
the MATLAB R2019a tools. For illustration, time series of   

the area of lakes, temperature and precipitation in one of the 
test areas are shown. The analysis of the errors in the restora-
tion of the passes showed that the developed algorithm allows 
us to restore the missing values of the lake areas from the data 
on changes in temperature and precipitation with practically 
acceptable accuracy. 
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